Abstract

Oxygen vacancies in catalysts can bring new properties, especially the enhanced catalytic efficiencies that are absent in their pristine counterparts. However, the deactivation of oxygen vacancies inevitably limits the durability of catalytic performance. Herein, a model of photocatalytic NO oxidation over Bi2SiO5 catalyst is selected to unravel the pivotal role of dopants in enhancing the long-term stability of oxygen vacancies. The introduction of phosphate dopants could stabilize oxygen vacancies via turning the local electronic structure. The phosphate dopants evoke the enhanced electron redistribution and cause the charge compensation to unsaturated coordination atoms around the oxygen vacancies. The unique electronic structure modulated by dopants could facilitate the adsorption and activation of H2O and O2, impeding those atoms from filling into oxygen vacancies. This work provides an innovative route for rationally altering the local electronic structure of catalysts toward efficient and sustainable photocatalytic applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call