Abstract

A systematic treatability study was conducted for the treatment of drill cuttings, a waste generated during petroleum exploration and production, by stabilization/solidification with Portland cement (CEM I), with the addition of high carbon power plant fly ash (HCFA), an industrial by-product, as a novel sorbent for organic contaminants. A factorial design experiment was adopted to investigate the effects of waste-to-binder ratio, binder formulation, and curing time on response variables including unconfined compressive strength (UCS), hydraulic conductivity, porosity, leachate pH, and acid neutralization capacity (ANC) of the s/s products. Results show that all factors had significant effects on the properties of the s/s products. Drill cuttings and HCFA addition both reduced UCS, but HCFA improved hydraulic conductivity, relative to CEM I only s/s products. Drill cuttings addition had little effect on the ANC of products prepared with CEM I only, and improved that of products containing HCFA. Management options assessment based on performance criteria adapted from regulatory and other guidance suggests that the s/s products could find application as controlled low-strength materials, landfill liner, and landfill daily cover. This work demonstrates how a systematic treatability study can be used to develop a s/s operating window for the management of a particular waste type.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.