Abstract
ZnO is a wide band gap metal oxide with a very interesting combination of semiconducting, transparent optical and catalytic properties. Recently, an amplified interest in ZnO has appeared due to the impressive progress made in nanofabrication of tailored ZnO nanostructures and functional surfaces. However, the fundamental principles governing the structure of even the clean low-index ZnO surfaces have not been adequately explained. From an interplay of high-resolution scanning probe microscopy (SPM), X-ray photoelectron spectroscopy (XPS), near edge X-ray absorption fine structure (NEXAFS) spectroscopy experiments, and density functional theory (DFT) calculations, we identify here a group of hitherto unresolved surface structures which stabilize the clean polar O-terminated ZnO(0001) surface. The found honeycomb structures are truly remarkable since their existence deviates from expectations using a conventional electrostatic model which applies to the opposite Zn-terminated (0001) surface. As a common principle, the differences for the clean polar ZnO surfaces are explained by a higher bonding flexibility of the exposed 3-fold coordinated surface Zn atoms as compared to O atoms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.