Abstract

An experimental study was performed to understand the ability of highly charged nanoparticles to stabilize a dispersion of weakly charged microspheres. The experiments involved adding either anionic (sulfate) or cationic (amidine) latex nanoparticles to dispersions of micrometer-sized silica particles near the silica isoelectric point (IEP). Although both types of nanoparticles increased the zeta potential of the silica microspheres above the value at which dispersions containing only silica spheres remained stable, only with the amidine nanoparticles was stability obtained. Adsorption tests with flat silica slides showed that the amidine nanoparticles deposited in much greater numbers onto the silica, producing multilayer coverage with adsorbed particle densities that were roughly three times that obtained with the sulfate nanoparticles. A model calculating the DLVO interaction between the silica spheres in which the adsorbed nanoparticle layers were treated as a continuous film with dielectric properties between those of polystyrene and water predicted stability for both systems. It is hypothesized that the relatively low adsorption of the sulfate nanoparticles (fractional surface coverages ≤ 25%) led to patches of bare silica on the microspheres that could align during interaction due to Brownian motion. These results indicate that highly charged nanoparticles can be effective stabilizers provided the level of adsorption is sufficiently high. It was also found that the zeta potential alone is not a sufficient parameter for predicting stability of these binary systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call