Abstract
We characterized valence anionic states of 1-methylcytosine using various electronic structure methods. We found that the most stable valence anion is related to neither the canonical amino-oxo nor a rare imino-oxo tautomer, in which a proton is transferred from the N4 to N3 atom. Instead, it is related to an imino-oxo tautomer, in which the C5 atom is protonated. This anion is characterized by an electron vertical detachment energy (VDE) of 2.12 eV and it is more stable than the anion based on the canonical tautomer by 1.0 kcal/mol. The latter is characterized by a VDE of 0.31 eV. Another unusual low-lying imino-oxo tautomer with a VDE of 3.60 eV has the C6 atom protonated and is 3.6 kcal/mol less stable than the anion of the canonical tautomer. All these anionic states are adiabatically unbound with respect to the canonical amino-oxo neutral, with the instability of 5.8 kcal/mol for the most stable valence anion. The mechanism of formation of anionic tautomers with carbon atoms protonated may involve intermolecular proton transfer or dissociative electron attachment to the canonical neutral tautomer followed by a barrier-free attachment of a hydrogen atom to the C5 or C6 atom. The six-member ring structure of anionic tautomers with carbon atoms protonated is unstable upon an excess electron detachment. Indeed the neutral systems collapse without a barrier to a linear or a bicyclo structure, which might be viewed as lesions to DNA or RNA. Within the PCM hydration model, the anions become adiabatically bound with respect to the corresponding neutrals, and the two most stable tautomers have a carbon atom protonated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.