Abstract

This work studies the stabilization of a class of control systems that use communication networks as signal transmission medium. The lateral motion of independently actuated four-wheel vehicle is modeled as an uncertain-linear system. Time delay and quantization density are modeled as Markov chains. The networked control systems U+0028 NCSs U+0029 with plants being lateral motion are first transformed to switched linear systems with uncertain parameters. Sufficient and necessary conditions for the stochastic stability of closed-loop networked control systems are then established. By solving the matrix inequalities, this work presents an output-feedback controller that depends on the modes of time delay and quantization density. The controller performance is illustrated via a vehicular lateral motion system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.