Abstract

This note addresses the robust stabilization problem for a general class of nonholonomic systems in the presence of drift uncertainties. The control approach developed is based on the combined applications of the sliding mode control technique and nonlinear time-varying systems theory. First, some properties of nonlinear time-varying systems are introduced for the purpose of designing sliding mode controller. An explicit time-varying feedback form is provided to guarantee the existence and uniqueness of periodic time-varying solution for the corresponding linear periodic partial differential equation. Second, an explicit discontinuous feedback control law is presented to guarantee the existence of sliding mode. The first integrals obtained by the previous periodic partial differential equation are then directly used to determine the switching function. The uniform asymptotic stability of the closed loop system is proved via the invariance principle of nonlinear time-varying systems. Finally, an example is given to illustrate the proposed approach.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call