Abstract

In recent experiments on ultracold matter, molecules have been produced from ultracold atoms by photoassociation, Feshbach resonances, and three-body recombination. The created molecules are translationally cold, but vibrationally highly excited. This will eventually lead them to be lost from the trap due to collisions. We propose shaped laser pulses to transfer these highly excited molecules to their ground vibrational level. Optimal control theory is employed to find the light field that will carry out this task with minimum intensity. We present results for the sodium dimer. The final target can be reached to within $99%$ provided the initial guess field is physically motivated. We find that the optimal fields contain the transition frequencies required by a good Franck-Condon pumping scheme. The analysis identifies the ranges of intensity and pulse duration which are able to achieve this task before any other competing processes take place. Such a scheme could produce stable ultracold molecular samples or even stable molecular Bose-Einstein condensates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.