Abstract

The influence of high-frequency electromagnetic radiation on propagation of solitary electromagnetic waves in graphene superlattice is analyzed taking into consideration energy dissipation. The expression for dissipative soliton potential is derived. It is demonstrated that the shape of the dissipative soliton depends on the high-frequency radiation amplitude. Intervals of high-frequency field amplitudes for which two types of dissipative solitons form in graphene superlattice are found. It is shown that areas of these solitons are regulated by variation of the high-frequency radiation amplitude.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call