Abstract
Stabilization of hexaphyrin(1.0.1.0.1.0) (named "rosarin") in its 25π radical state is achieved using a hetero-bimetal-coordination strategy. The antiaromatic BF2 complex B-1 was first synthesized, and then rhodium ion was inserted into B-1 to produce the BF2/Rh(CO)2 mixed complex Rh-B-1 as a highly air-stable radical. The structures of B-1 and Rh-B-1 were determined by single-crystal X-ray diffractions, and the antiaromatic or radical character was identified by various spectroscopy evidence and theoretical calculations. Rh-B-1 exhibits excellent redox properties, enabling amphoteric aromatic-antiaromatic conversion to their 24/26π states. Compared to the 24/26π conjugation systems on the same skeleton, Rh-B-1 has the narrowest electrochemical and optical band gaps, with the longest absorption band at 1010 nm. The ring-current analysis reveals intense paratropic currents for B-1 and co-existing diatropic-paratropic currents for Rh-B-1. This hetero-bimetal-coordination system provides a novel platform for organic radical stabilization on porphyrinoids, showing the prospect of modulating ligand oxidation states through rational coordination design.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.