Abstract

Background contextReconstructive surgeries at the occipitocervical (OC) junction have been studied in treating degenerative conditions. There is a paucity of data for optimal fixation for a traumatically unstable OC joint. In clinical OC dislocations, segmental fixation may be impossible because of vertebral artery injury or fracture. Segmental fixation of the occiput, C1, and C2 demonstrated maximum biomechanical stability in fixation of an unstable craniocervical dislocation. A biomechanical study comparing various points of cervical posterior screw fixation after recreating traumatic injury would illuminate relative advantages between the various techniques. PurposeTo determine the rigidity lost, if any, of segmental C0–C2 posterior screw fixation versus fixation skipping C1 at the OC junction, with or without a cross-connector. Study designThis study is a cadaveric biomechanical investigation. MethodsIntervertebral motions and translations were recorded in seven specimens under conditions in the following order: intact, OC dislocation model with complete disruption of the cruciate ligaments, alar ligaments, and occipitoatlantal/atlantoaxial capsules (injury), segmental posterior fixation (SPF) with posterior instrumentation (ELLIPSE; Globus Medical, Inc., Audubon, PA, USA) at occiput, C1, and C2 levels, endpoint fixation (EPF) with posterior instrumentation at occiput and C1 level skipping C1, and endpoint fixation with a cross-connector (EPFC). Motion was applied through a custom spine simulator with a pure moment load of 2.5 Nm and measured with motion capture markers attached to occiput (C0), anterior C1 ring, and C2. Flexion-extension (FE), lateral bending (LB), axial rotation (AR), and cranial-caudal (CC) motions were recorded in terms of C0–C2. Results were reported as a percentage of injured motion (injury=100%), unless otherwise stated. ResultsThe injury significantly increased the motion to 165%, 263%, and 130%, during FE, LB, and AR, respectively, of intact. The CC translations increased to 164%, 254%, and 121% during FE, LB, AR, respectively, of intact. Segmental posterior fixation significantly reduced motion to 7%, 8%, and 1%, during FE, LB, and AR, respectively, of injury. Endpoint fixation significantly increased motion in FE, resulting in 12%, 6%, and 4% during FE, LB, and AR, respectively, of injury when compared with SPF. The EPFC construct decreased the motion compared with its counterpart to 8.6%, 5.7%, and 3.2% during FE, LB, and AR, respectively. ConclusionsAll fixation constructs significantly reduced motion in all loading modes and CC translations, compared with intact and injury. The construct with the greatest stability against craniocervical dislocation included SPF with instrumentation at the occiput, C1, and C2. By skipping C1 using the EPF, FE and cephalad-caudal translations significantly increased compared with posterior fixation at every level. The addition of a cross-connector increased the stability but was not statistically significant.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.