Abstract

Consider the chemotaxis–Navier–Stokes equations in a bounded smooth domain Ω⊂Rd for d≥3. We show that any solution starting close to an equilibrium exists globally and converges exponentially fast to the equilibrium as time tends to infinity, provided that the initial density n0 of amoebae satisfies ∫Ωn0dx<2|Ω|, where |Ω| stands for the Lebesgue measure of Ω. First, we prove the existence of a local strong solution for large initial data. Then, the global existence result is obtained assuming that the initial data are close to the equilibrium in their natural norm. In particular, we show the strong solution in the maximal Lp−Lq-regularity class with (p,q)∈(2,∞)×(d,∞) satisfying 2/p+d/q<1. Furthermore, the solution is real analytic in space and time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.