Abstract
The Rydberg electron–transfer spectroscopy (RET) experiment [V. Periquet, A. Moreau, S. Carles, J.P. Schermann, C. Desfrançois, J. Electron. Spectrosc. Relat. Phenom., 106, 141 (2000)] showed that only after solvation by two water molecules the adenine molecule can form a stable covalent anion. Anions of adenine–water complexes containing different numbers of water molecules (A·W n , n =1–4) are investigated in this work with the use of quantum mechanical ab initio calculations. The calculations are used to determine the change of stability of the adenine covalent anion as the number of water molecules in the solvation shell increases. The analysis of the anion electron density is used to describe the localization of the excess electron in the A·W n complexes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.