Abstract

We consider the synchronization problem of dynamical networks with delayed interactions. More specifically, we focus on the stabilization of synchronous equilibria in regular networks where the degrees of all nodes are equal. By studying such control near a Hopf bifurcation, we obtain necessary and sufficient conditions for stabilization. It is shown that the stabilization domains in the parameter space reappear periodically with time-delay. We find that the frequency of reappearance of the control domains is linearly proportional to the number of cycle multipartitions of the network.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.