Abstract

In order to stabilize ultrafine particles of SnO2 which is essential to obtain high gas sensitivity, a systematic investigation was undertaken regarding the stabilizing effects of 5 at% impregnated foreign additives, consisting of oxides or polyoxy compounds of 31 metals and 3 non-metals. The data of specific surface area, SA, as well as SnO2 crystallite size, D, evaluated from X-ray diffraction showed that the additives could be classified into several groups according to the effectiveness. The most effective group, consisting of P-Ba, Sm, Ba, P, Mo, W, Ca, Sr, Cr and In, could keepD less than 10 nm even after calcination at 900°C, whereas pure SnO2 underwent grain growth to haveD of 13 and 27 nm at 600 and 900°C, respectively. Electron microscopy revealed that neck sizes, X, between crystallites were fairly proportional toD(X/D = 0.80). A simple analysis of SA and D data based on a monosized sphere model suggested that each crystallite was coordinated with 3–4.5 neighbours through the necks. The existing state and stabilizing mechanism of additives are discussed in conjunction with the electrical resistance of porously sintered elements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.