Abstract

The silver chromate precipitate present in neurons impregnated according to the Golgi-rapid and Golgi-Kopsch procedures can be stabilized by treatment with a photographic developer. In a complementary light microscopic study the stabilizing properties of various photographic developers were tested. Kodalith, Elon-ascorbic acid, HC-110, D-19 and Neutol proved to be the most successful. In the present electron microscopic study, we studied the distribution, shape and size of the particles found in Golgi-rapid and Golgi-Kopsch-impregnated neurons by treatment with each of these developers and, simultaneously, the effect of the developer on the preservation of the ultrastructural details. The reaction product after developer-treatment of Golgi-rapid material is sufficiently stable to withstand embedding and thin sectioning, whereas in Golgi-Kopsch material additional gold chloride "toning" is necessary. In Golgi-impregnated, Kodalith-, Elon-ascorbic acid-, or HC-110-treated material the formed particles are small and located in the cytoplasm, limited by the plasma membranes of the impregnated profiles. In Golgi-impregnated, D-19 treated neurons, the formed particles are relatively coarse. The majority of these particles are within cytoplasm, but particles may also lie either across or entirely outside the plasma membranes of the impregnated profiles. A large number of the small particles in Golgi impregnated, Neutol-stabilized neurons can be seen partly or entirely outside the plasma membranes of the impregnated profiles. Good original ultrastructural preservation seems to be unaffected by developer treatment. Treatment of Golgi material with sodium bromide before stabilization (bromide substitution) results in the formation of small silver particles both inside and outside the impregnated profiles. The sodium bromide step of this procedure has an adverse effect on the preservation of ultrastructural detail.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.