Abstract
In this paper, we develop stability and control design framework for time-varying and time-invariant sets of nonlinear dynamical systems using vector Lyapunov functions. Several Lyapunov functions arise naturally in multi-agent systems, where each agent can be associated with a generalized energy function which further becomes a component of a vector Lyapunov function. We apply the developed control framework to the problem of multi-vehicle coordinated motion to design distributed controllers for individual vehicles moving in a specified formation. The main idea of our approach is that a moving formation of vehicles can be characterized by a time-varying set in the state space, and hence, the problem of distributed control design for multi-vehicle coordinated motion is equivalent to the design of stabilizing controllers for time-varying sets of nonlinear dynamical systems. The control framework is shown to ensure global exponential stabilization of multi-vehicle formations. Finally, we implement the feedback stabilizing controllers for time-invariant sets to achieve global exponential stabilization of static formations of multiple vehicles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.