Abstract

An RNA hairpin is an essential structural element of RNA. Hairpins play crucial roles in gene expression and intermolecular recognition but are also involved in the pathogenesis of some congenital diseases. Structural studies of the hairpin motifs are impeded by their thermodynamic instability, as they tend to unfold to form duplexes, especially at high concentrations required for crystallography or nuclear magnetic resonance spectroscopy. We have elaborated techniques to stabilize the RNA hairpins by linking the free ends of the RNA strand at the base of the hairpin stem. One method involves stilbene diether or hexaethylene glycol linkers and circularization by T4 RNA ligase. Another method uses click chemistry to stitch the RNA ends with a triazole linker. Both techniques are efficient and easy to perform. They should be useful in making stable, biologically relevant RNA constructs for structural studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.