Abstract

As part of our ongoing studies to provide an experimental basis for the improved understanding of organocatalytic reaction mechanisms we present a study on the influence of amine bases on enamine intermediate stabilization in proline catalysis. The (partial) deprotonation of the proline acid function is displayed by characteristic shifts of certain proton resonances and is also manifested by an increase of the amount of enamine intermediate upon reaching a critical pK(aH). Strong bases, such as 1,8-diazabicyclo[5.4.0]-undec-7-ene (DBU), allow for outstanding enamine stabilization in various solvents and, hence, permit the detection of enamine species that have been inaccessible until now (illustrated by the observation of minor amounts of Z enamines). The in situ NMR detection of a prolinate-DBUH(+) ion pair supports the well-documented reversal of enantioselectivity of proline-catalyzed aminations in the presence of amine bases by disabling the bifunctional activity and switching to a "simple" stereocontrol effect (as known from the Jørgensen/Hayashi-type diarylprolinol ethers). In addition, the possibility of attractive ionic interactions between both the iminium ion and prolinate enamines available in the presence of strong amine bases suggests promotion of the Mannich pathway in aldol reactions to mainly form condensation products.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.