Abstract

Stabilization processes of polar surfaces are often very complex and interesting. Understanding of these processes is crucial as it ultimately determines the properties of the film. Here, by the combined study of Low Energy Electron Diffraction (LEED), X-ray Photoelectron Spectroscopy (XPS) and Ultraviolet Photoemission Spectroscopy (UPS) techniques we show that, although there can be many processes involved in the stabilization of the polar surfaces, in case of Mn3O4(001)/Ag(001), it goes through different reconstructions of the Mn2O4 terminated surface which is in good agreements with the theoretical predictions. The complex surface phase diagram has been probed by LEED as a function of film thickness, oxygen partial pressure and substrate temperature during growth, while their chemical compositions have been probed by XPS. Below a critical film thickness of ∼ 1 unit cell height (8 sublayers or 3 ML) of Mn3O4 and oxygen partial pressure range of 2 × 10−8 mbar < P(O2) ≤ 5 × 10−7 mbar, different surface structures are detected and beyond this thickness a constant evolution of apparent p(2 × 2) structure have been observed due to the coexistence of p(2 × 1) and c(2 × 2) structures. Similar apparent p(2 × 2) structure has also observed by the oxidation of Ag(001)-supported MnO(001) surface. Our study also shows that the substrate temperature during growth plays a crucial role in determining the final structure of the polar Mn3O4 film and as a consequence of that a strong interplay between structural and kinetic stability in the Mn3O4 film has been observed. Further, stripe-like LEED pattern has been observed from the Mn3O4(001) surface, for the film grown at higher oxygen partial pressure (> 5 × 10−7 mbar) and higher temperature UHV annealing. The origin of these stripes has been explained with the help of UPS results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.