Abstract

As a type of soil stabilization material, zeolite has good cation exchange ability and synchronous stabilization potential for multiple active heavy metal cations in soil. However, natural zeolite contains relatively high amounts of impurities, and has a single heavy metal stabilization mechanism, which limits its capacity to stabilize heavy metals in soil. To develop a stabilization material that could efficiently stabilize several heavy metals simultaneously, in the present study, modified zeolite (MZEO) was prepared via NaCl pretreatment, chitosan modification, modified chitosan loading, and CaSiO3 modification to enable Pb, Cd, and Zn stabilization in soil. The aim of the present study was to explore zeolite modification technologies, reveal the stabilization mechanism of polymetallic contaminated soil and evaluate the stabilization effects of MZEO. According to the results, the modification treatment increased the cation exchange capacity of MZEO nearly 8-fold, the specific surface area 3.4-fold, and its internal pore structure was richer, with more adsorption sites. The appearance of a -NH2 absorption bands confirmed the loading of chitosan successfully, and the modification enhanced the heavy metal stabilization mechanism. Upon the addition of MZEO to Baiyin soil, the chemical morphologies of heavy metals changed, which reduced the weak acid extracted forms of Pb, Cd, and Zn in the soil by 21%, 10%, and 19%, respectively. The potential mechanisms of free heavy metal reduction were ion exchange with Na in MZEO, heavy metal mineral formation by Al replacement in the crystal lattice, and bonding with SiO32− formed by the hydrolysis of MZEO-loaded synaptic CaSiO3 particles, to form silicate precipitation. MZEO application minimized heavy metal leaching risk in the soil and heavy metal biological/plant accessibility, with potential economic benefits. MZEO has promising applications in polluted soil remediation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.