Abstract

Aggregation of alpha-synuclein is tightly associated with many neurodegenerative diseases, such as Parkinson's disease, dementia with Lewy body, Lewy body variant of Alzheimer's disease, multiple system atrophy, and Hallervorden-Spatz disease, implicating a crucial role of aggregated forms of alpha-synuclein in the pathogenesis. Here, we examined the effect of elevated temperature on the oligomerization and structural changes of alpha-synuclein in the early stage of aggregation and show that self-assembly is crucial for the stabilization of a partially folded conformation. The efficiency of alpha-synuclein oligomerization increased proportional to the temperature increase, both in purified form and in crude cytosolic preparation. This oligomerization coincided with a small but reproducible change in the circular dichroism spectrum and an increase in the 1-anilinonaphthalene-8-sulfonic acid binding. The hydrodynamic dimensions of the dimer measured by size exclusion chromatography suggest a pre-molten globule-like structure. These data suggest that partially folded alpha-synuclein, which is unstable in the monomeric form, is stabilized by self-assembly and that these oligomers may evolve into the fibril nucleus.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.