Abstract

AbstractNanodiamond–graphene core–shell materials have several unique properties compared with purely sp2‐bonded nanocarbons and perform remarkably well as metal‐free catalysts. In this work, we report that palladium nanoparticles supported on nanodiamond–graphene core–shell materials (Pd/ND@G) exhibit superior catalytic activity in CO oxidation compared to Pd NPs supported on an sp2‐bonded onion‐like carbon (Pd/OLC) material. Characterization revealed that the Pd NPs in Pd/ND@G have a special morphology with reduced crystallinity and are more stable towards sintering at high temperature than the Pd NPs in Pd/OLC. The electronic structure of Pd is changed in Pd/ND@G, resulting in weak CO chemisorption on the Pd NPs. Our work indicates that strong metal–support interactions can be achieved on a non‐reducible support, as exemplified for nanocarbon, by carefully tuning the surface structure of the support, thus providing a good example for designing a high‐performance nanostructured catalyst.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.