Abstract

This investigation considers stability analysis and control design for nonlinear time-delay systems subject to input saturation. An anti-windup fuzzy control approach, based on fuzzy modeling of nonlinear systems, is developed to deal with the problems of stabilization of the closed-loop system and enlargement of the domain of attraction. To facilitate the designing work, the nonlinearity of saturation is first characterized by sector conditions, which provide a basis for analysis and synthesis of the anti-windup fuzzy control scheme. Then, the Lyapunov–Krasovskii delay-independent and delay-dependent functional approaches are applied to establish sufficient conditions that ensure convergence of all admissible initial states within the domain of attraction. These conditions are formulated as a convex optimization problem with constraints provided by a set of linear matrix inequalities. Finally, numeric examples are given to validate the proposed method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call