Abstract

This work considers the problem of stabilization of nonlinear systems subject to state and control constraints, for cases where the state constraints need to be enforced at all times (hard constraints) and where they can be relaxed for some time (soft constraints). We propose a Lyapunov-based predictive control design that guarantees stabilization and state and input constraint satisfaction for all times from an explicitly characterized set of initial conditions. An auxiliary Lyapunov-based analytical bounded control design is used to characterize the stability region of the predictive controller and also provide a feasible initial guess to the optimization problem in the predictive controller formulation. For the case when the state constraints are soft, we propose a switched predictive control strategy that reduces the time during which state constraints are violated, driving the states into the state and input constraints feasibility region of the Lyapunov-based predictive controller. We demonstrate the application of the Lyapunov-based predictive controller designs through a chemical process example.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.