Abstract

It has been recently shown that nanobubbles exhibit a remarkable and unexpected stability. The lifetime of nanobubbles, formed either within liquids or on hydrophobic surfaces, can exceed by more than 10 orders of magnitude the theoretical expectation, which predicts an almost immediate dissolution due to the very high Laplace internal pressure in such small bubbles. This unexpected property of nanobubbles has made them leading candidates for energy applications, e.g. as high-pressure nanoreactors in fuel cells, and for biological systems, as transport systems for gas delivery to membranes and cells. Here we use molecular simulation to shed light on the molecular mechanisms accounting for the formation and stabilization of nanobubbles under an hydrophobic nanoconfinement. Using an entropic reaction coordinate, we elucidate the nucleation pathway and determine the formation free energy of nanobubbles in water confined in carbon nanotubes. We identify a critical volume for which the existence of nanobubbles is thermodynamically favored, as the free energy profile flattens around this critical volume, and mechanically favored, since the nanoconfined fluid pressure, along the nanotube axis, is positive at this juncture. We also show that the stabilization process is assisted by the hydrophobic nature of the carbon nanotube and by the formation of strong hydrogen bonds at the interface. Caroline Desgranges and Jerome Delhommelle

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.