Abstract

NaNO3-promoted MgO sorbents are known to achieve enhanced CO2 sorption uptake but fail to maintain their capacity after multiple sorption-regeneration cycles. In this study, commercially available hydrotalcites (Pural Mg30, Pural Mg70, and synthetic hydrotalcite) were used as stabilizers for NaNO3-impregnated MgO (MgONaNO3) sorbents to improve their cyclic stability. Results show that the Mg30-stabilized MgONaNO3 attained higher and stable overall CO2 sorption performance as compared to bare MgONaNO3 after multiple sorption cycles. XRD analyses reveal that the hydrotalcites act as templates for MgCO3 by restricting the formation of large and nonuniform product crystallites. Furthermore, CO2-TPD results show that the hydrotalcites cause a change in the basic sites of the sorbent, which may be attributed to its high interaction with both MgO and NaNO3. This interaction becomes stronger as cycles proceed due to the structural rearrangements occurring, thus contributing to the stable behavior of the sorbents. However, these characteristics were not found on MgONaNO3 and the α-Al2O3-stabilized samples, thus proving the unique ability of hydrotalcites. From these results, we then derived the formation scheme of MgCO3 on the hydrotalcite-stabilized sorbents. This study presents a simple yet effective method of improving the stability of molten salt-promoted sorbents with promising potential for industrial use.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.