Abstract

It is known that one of the reasons leading to the development of neuroligical disorders, such as Parkinson’s disease, is the damage of the mitochondrial NADH dehydrogenase. We suggest that it happens when NADH dehydrogenase loses connection with its coenzyme flavine mononucleotide (FMN) in the active center. This process is blocked by the enzyme substrate NADH or by the reaction product NAD. In this work we have developed a method based on fluorescence spectroscopy to monitor the stability of FMN in isolated rat liver mitochondria. It was observed that this process is strongly blocked by adenine analogs ATP, ADP, and AMP. Adenine, adenosine, NADPH, nicotine amide, and nicotine acid did not prevent the FMN loss. The obtained data could be used as a basis for construction of synthetic analogues of adenosine phosphates for the treatment of mitochondrial diseases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call