Abstract

Cellular agriculture products, like myoglobin, are increasingly used by the food industry to provide desirable sensory properties to plant-based meat substitutes. This study elucidated the physicochemical properties and redox stability of myoglobin from both natural (equine) and cellular agriculture (bovine, sperm whale, and leopard) sources. The electrical characteristics and water-solubility of the different myoglobin samples were measured from pH 2.5 to 8.5. The isoelectric point of the myoglobin samples depended on the species, being pH 5.5 for equine, pH 4.5 for leopard and bovine, and pH 6.5 for sperm whale. All myoglobin samples had a solubility greater than 80% across the entire pH range studied. All myoglobin solutions appeared red and had two peaks in their UV–visible absorbance spectra after one day, which is consistent with oxymyoglobin formation. Equine myoglobin at pH 8 was selected to study its redox and color stability over time, where the oxymyoglobin oxidative status closely paralleled with the redness of the solutions. The effects of antioxidants (ascorbic acid, caffeic acid, catechin, gallic acid, quercetin, taxifolin, Trolox, and 4-methylcatechol) on the redox and color stability (redness) of the equine myoglobin (pH 8.0) was also studied. Antioxidants with low reduction potential values (ascorbic acid and quercetin) were particularly effective at enhancing the color stability of oxymyoglobin. The computational modeling study showed that amino acids on the myoglobin interacted with antioxidants through hydrogen bonds. The insights obtained may have important implications for the use of cellular agriculture to produce myoglobin for food applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.