Abstract

We report ambient pressure stabilization of a previously synthesized high-pressure (6.5 GPa) phase, GdB12, in a Zr1-xGdxB12 solid solution (with ∼54 at. % Gd solubility, as determined by both powder X-ray diffraction and energy-dispersive spectroscopy). Limited solubilities of Sm (∼15 at. % Sm), Nd (∼7 at. % Nd), and Pr (∼4 at. % Pr), in ZrB12 were also achieved. Previous attempts at preparing these rare-earth borides were unsuccessful even under high pressure. On the basis of insights provided from the unit cell sizes observed via solid solutions, at least 6.5 GPa of pressure would be needed to synthesize these rare-earth borides since Sm, Nd, and Pr atomic radii are larger than that of Gd. The solid-solution formation for Zr1-xGdxB12 and Zr1-xSmxB12 can be seen in the change of the unit cell of each of the solid solutions relative to their pure parent compounds as well as in the change of color of the respective alloys. For Zr0.45Gd0.55B12 and Zr0.70Sm0.30B12, the cubic unit cell parameter (a) reached a value of 7.453 and 7.428 Å, respectively, compared to 7.412 Å for pure ZrB12.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.