Abstract

Stabilization is the most important remediation mechanisms for sediment polluted heavy metals. However, little research has been done on the identification of microenvironmental response and internal correlation, as well as synergistic mechanisms during heavy metal remediation. This study aims to investigate the inner response mechanisms of microenvironment after the lead (Pb) are gradually stabilized in sediment. An eco-friendly amendment strategy which firstly used 100% biodegradable sophorolipids (SOP) to modify chlorapatite (ClAP) for the fabrication of SOP@nClAP was applied in this study. The stabilization efficiency of Pb was significantly improved by SOP@nClAP compared with ClAP. Most importantly, the high-throughput sequencing showed that the dominant species in the sediment changed with the stabilization of Pb. The decrease of Proteobacteria and increase of Firmicutes, especially the Sedimentibacter within the phylum Firmicute directly suggested that large amounts of Pb were stabilized. This research is not only devoted to stabilize Pb in sediment by eco-friendly amendment strategy, but also keep a watchful eye on microenvironment response mechanisms during the Pb stabilization in sediment. Therefore, this study lays a foundation for the future application of more heavy metal amendment strategies in the sediment environment and improves the possibility of large-scale site amendment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call