Abstract

We report an experimental result on the stabilization of the energetic–ion driven internal kink mode (ion fishbone) by electron cyclotron resonance heating (ECRH), observed for the first time in a toroidal plasma. The mode asserts itself a resistive branch close to the marginal stability point. The resulting fishbone mode depends not only on the injected power but also on the radial deposition location of ECRH, and the instability can be completely suppressed when the injected ECRH power exceeds certain threshold. Analysis by the fishbone dispersion relation, including the resistive effect, suggests that the magnetic Reynolds number plays a key role in the mode stabilization—it weakens the mode growth-rate and enhances the critical energetic–ion beta without changing the energetic–ion population. This ion fishbone stabilization mechanism can be important for future devices such as ITER, which has significant ECRH capability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.