Abstract

The electronic structure and ground spin states, S, observed for mixed-valent iron–sulfur dimers (FeII-FeIII) are typically determined by the Heisenberg exchange interaction, J, that couples the magnetic interaction of the two metal centres either ferromagnetically (J > 0, S = 9/2) or antiferromagnetically (J < 0, S = 1/2). In the case of antiferromagnetically coupled iron centres, stabilization of the high-spin S = 9/2 ground state is also feasible through a Heisenberg double-exchange interaction, B, which lifts the degeneracy of the Heisenberg spin states. This theorem also predicts intermediate spin states for mixed-valent dimers, but those have so far remained elusive. Herein, we describe the structural, electron paramagnetic resonance and Mössbauer spectroscopic, and magnetic characterization of a series of mixed-valent complexes featuring [Fe2Q2]+ (Q = S2–, Se2–, Te2–), where the Se and Te complexes favour S = 3/2 spin states. The incorporation of heavier chalcogenides in this series reveals a delicate balance of antiferromagnetic coupling, Heisenberg double-exchange and vibronic coupling.

Highlights

  • The electronic structure and ground spin states, S, observed for mixed-valent iron–sulfur dimers (FeII-FeIII) are typically determined by the Heisenberg exchange interaction, J, that couples the magnetic interaction of the two metal centres either ferromagnetically (J > 0, S = 9/2) or antiferromagnetically (J < 0, S = 1/2)

  • Iron–sulfur dimers in biology are integral to essential life processes and may be viewed as elementary building blocks to help understand the electronic structure of larger iron–sulfur cluster motifs[1,2]

  • The majority of synthetic and biological [Fe2S2]+ clusters possess S = 1/2 ground spin states arising from the antiferromagnetic coupling of the locally high-spin d5-d6 iron centres

Read more

Summary

Introduction

The electronic structure and ground spin states, S, observed for mixed-valent iron–sulfur dimers (FeII-FeIII) are typically determined by the Heisenberg exchange interaction, J, that couples the magnetic interaction of the two metal centres either ferromagnetically (J > 0, S = 9/2) or antiferromagnetically (J < 0, S = 1/2). In the case of antiferromagnetically coupled iron centres, stabilization of the high-spin S = 9/2 ground state is feasible through a Heisenberg double-exchange interaction, B, which lifts the degeneracy of the Heisenberg spin states. This theorem predicts intermediate spin states for mixed-valent dimers, but those have so far remained elusive.

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.