Abstract

The formation of a high-resistance electrical seal between a cell membrane and a glass micropipet tip is essential in patch-clamp experiments. We have studied the electrical properties and the mechanical stability of the seal using a microfluidic chip generating laminar flow in open volumes. We show that, by using fluid flow (1-10 mm/s) acting along the symmetry axis of the cell-pipet, seals of a higher mechanical stability with increased resistances can be achieved, allowing up to 100% longer recording times and over 40% decreased noise levels (Irms). These improved properties are beneficial for high-sensitivity patch-clamp recordings, in particular, in longtime studies of ion channel receptor systems that are relevant in biosensor applications of the technique. Furthermore, these observations support the combination of patch-clamp with microfluidic devices, for example, for rapid solution exchange around a single cell sensor for high-throughput electrophysiology and for highly resolved kinetic studies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call