Abstract

Many aromatic ligands, including tetra-( N-methyl-4-pyridyl)porphyrin (TMPyP4), have been reported to bind and stabilize quadruplex structure of telomeric DNA. We synthesized novel quadruplex-interacting porphyrins with cationic pyridinium and trimethylammonium arms at para- or meta-position of all phenyl groups of tetratolyl porphyrin. An antiparallel quadruplex structure was found to be stabilized more greatly by the meta-isomers than by the para-isomers and well-studied TMPyP4, as revealed by the increase in melting temperature of the quadruplex. One mole equivalent of the isomers was sufficient to stabilize the quadruplex. From the results of absorption, induced circular dichroism, and fluorescence resonance energy transfer spectroscopic methods, the unique site for the porphyrin binding is suggested to be the external guanine tetrad or groove of the quadruplex. The cationic side arms played a key role in the stabilization of the quadruplex structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.