Abstract

The natural permeability of geothermal reservoirs is low and needs to be enhanced to ensure an efficient use and economic viability. Next to chemical enhancement, the main technique used for that purpose is hydraulic fracturing. Here, hydraulic fracturing is introduced in a thermo-poroelastic framework. The main addition to this framework is a fracturing model, phrased in terms of Terzaghi’s effective stress that governs the evolution of size and aperture of the fractures in all directions of space. At any geometrical point, a fracture-induced anisotropic permeability tensor is calculated: Next to the injection pressure and thermal shrinking, the directional properties of this tensor are strongly influenced by geological stresses. The fully integrated framework is henceforth used in simulating thermal recovery from enhanced geothermal reservoirs. Evidently, the credibility of the numerical simulations cannot be sufficiently trusted with large spurious wiggles in the temperature field and consequently in those of the effective stresses. This paper provides several approaches to stabilize convection of heat due to extreme injection conditions at early stages, sudden increase in permeability due to hydraulic fracturing, and near the production wells at late injection stages. Emphasis is paid to the subgrid scale/gradient subgrid scale method where the transient problem is placed into a stabilized advection–diffusion–reaction problem.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.