Abstract

We show that protein unfolding on biomaterials may be dramatically reduced via tuning the chemical heterogeneity of the protein-material interface. Specifically, using dynamic single-molecule methods, we confirmed that the transient structure and dynamics of fibronectin (FN) may be mediated through varying the composition of random copolymer brushes. The brushes, which themselves represent an intriguing biomaterial, were composed of oligoethylene glycol and sulfobetaine methacrylate and presumably stabilized FN through partitioning and/or segregation of the copolymers. We further showed that, by controlling the transient structure and dynamics of FN, the secretion of TNF-α and IL-6 by RAW 264.7 was markedly diminished.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.