Abstract

Effective in situ remediation of Cr(VI) in groundwater requires the successful delivery of reactive iron particles to the subsurface. Fe 0 nanoparticles (20–110 nm diameter) supported on silica fume were synthesized by borohydride reduction of an aqueous iron salt in the presence of a support material. The experimental result showed that attachment of Fe 0 nanoparticles on the commercial available sub-micrometer silica fume prevented them from aggregation while maintaining the particle reactivity. When the Fe 0 concentration was 0.4 g/L, 88.00% of 40 mg/L Cr(VI) was removed by silica fume-supported Fe 0 nanoparticles (SF-Fe 0) in 120 min, 22.55% higher than unsupported Fe 0. Furthermore, transport experiments confirmed that almost all unsupported Fe 0 was retained, whereas 51.50% and 38.29% of SF-Fe 0 were eluted from the vertical and horizontal sand column, respectively. Additionally, the effect of solution ionic strength on the transport ability of SF-Fe 0 was evaluated. The result showed that increase in the salt concentration led to a decrease in the mobility and also the divalent ion Ca 2+ had a greater effect than that of monovalent ion Na +.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call