Abstract

We consider an emulsion whose droplets contain a trapped species (insoluble in the continuous phase) and study the emulsion's stability against coarsening via Lifshitz−Slyozov dynamics (Ostwald ripening). Extending an earlier treatment by Kabalnov et al. (Colloids Surf., 1987, 24, 19−32), we derive a general condition on the mean initial droplet volume which ensures stability, even when arbitrary polydispersity is present in both size and composition of the initial droplets. We distinguish “nucleated” coarsening, which requires either fluctuations about the mean field equations or a tail in the initial droplet size distribution, from “spinodal” coarsening in which a typical droplet is locally unstable. A weaker condition for stability, previously suggested by Kabalnov et al., is sufficient only to prevent “spinodal” coarsening and is best viewed as a condition for metastability. The coarsening of unstable emulsions is considered and shown at long times to resemble that of ordinary emulsions (with no trapp...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.