Abstract
We describe a method of stabilizing the dominant structure in a chaotic reaction-diffusion system, where the underlying nonlinear dynamics needs not to be known. The dominant mode is identified by the Karhunen-Loeve decomposition, also known as orthogonal decomposition. Using a ionic version of the Brusselator model in a spatially one-dimensional system, our control strategy is based on perturbations derived from the amplitude function of the dominant spatial mode. The perturbation is used in two different ways: A global perturbation is realized by forcing an electric current through the one-dimensional system, whereas the local perturbation is performed by modulating concentrations of the autocatalyst at the boundaries. Only the global method enhances the contribution of the dominant mode to the total fluctuation energy. On the other hand, the local method leads to simple bulk oscillation of the entire system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Collection of Czechoslovak Chemical Communications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.