Abstract

Discotic liquid crystals (LCs) are promising materials in the field of electronic components and, in particular, to make efficient photovoltaic cells due to their good charge transport properties. These materials generally exhibit a mesophase in which the disk-shaped molecules can self-assemble into columns, which favorize charge displacement, and may align themselves uniformly on surfaces to form well-oriented thin films. In order to orientate such a columnar thin film on an indium tin oxide (ITO) substrate, the film is heated up to the temperature range of the isotropic liquid phase and subsequently cooled down again. This treatment may lead not only to the desired alignment, but also to dewetting, which leads to an appreciable inhomogeneity in film thickness and to short circuits during the realization of photovoltaic cells. In this article, we describe how this dewetting and the film morphology can be influenced by ITO surface treatments. The chemical modifications of the surface by these treatments were studied by X-ray photoelectron spectroscopy (XPS). Such ITO treatments are shown to be efficient to prevent thin film dewetting when combined with rapid cooling through the isotropic-to-LC phase transition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.