Abstract

Effects of using small amounts of a Petrit T, a by-product of manufacture sponge iron, to modify clayey silt soil were investigated in this study. Petrit T was added at 2%, 4% and 7% of soil dry weight. A series of unconfined compressive strength tests, consistency limits tests and pH tests were conducted at 7, 14, 28, 60 and 90 days of curing periods to evaluate the physical and mechanical properties of treated soil. Results indicated improving in the unconfined compressive strength, stiffness and workability of treated soil directly after treatment and over time. Increasing in soil density and decreasing in water content were observed, with increasing Petrit T content and curing time. The pH value was immediately increasing after treatment and then gradually decreased over time. Failure mode gradually changed from plastic to brittle behavior with increasing binder content and curing time. The outcomes of this research show a promising way of using a new by-product binder to stabilize soft soils in various engineering projects in order to reduce the costs which are associated with of excavation and transportation works.

Highlights

  • Chemical stabilization is a widely used, low-cost and effective technique to improve the physical and mechanical properties for a broad range of soils [1]

  • Decreasing the plasticity index has been shown to enhance the workability of the soil [29] [30] [31]

  • The plasticity index decreases over time, even for very low binder content

Read more

Summary

Introduction

Chemical stabilization is a widely used, low-cost and effective technique to improve the physical and mechanical properties for a broad range of soils [1]. Numerous additives can be used to improve soft soils. Some of these additives are well known and commonly used, including cement and lime. In addition to by-products from industrial processes, such as various slags, fly ashes, and blast furnace slags are used.

Objectives
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.