Abstract
This paper proposes a linear sampled-data controller for the stabilization of chaotic system. The system stabilization and performance issues will be investigated. Stability conditions will be derived based on the Lyapunov approach. The findings of the maximum sampling period and the feedback gain of controller, and the optimization of system performance will be formulated as a generalized eigenvalue minimization problem. Based on the analysis result, a stable linear sampled-data controller can be realized systematically to stabilize a chaotic system. An example of stabilizing a Lorenz system will be given to illustrate the design procedure and effectiveness of the proposed approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.