Abstract
Density functional theory-based computations are carried out to analyze the electronic structure and stability of B2(MIC)2 complexes, where MIC is a mesoionic carbene, viz., imidazolin-4-ylidenes, pyrazolin-4-ylidene, 1,2,3-triazol-5-ylidene, tetrazol-5-ylidene, and isoxazol-4-ylidene. The structure, stability, and the nature of bonding of these complexes are further compared to those of the previously reported B2(NHC)2 and B2(cAAC)2. A thorough bonding analysis via natural bond order, molecular orbital, and energy decomposition analyses (EDA) in combination with natural orbital for chemical valence (NOCV) reveals that MICs are suitable ligands to stabilize B2 species in its (3)1∑g+ excited state, resulting in an effective B–B bond order of 3. Their high dissociation energy and endergonicity at 298 K for the dissociations L–BB–L → 2 B–L and L–BB–L → BB + 2 L (L = Ligand) indicate their viability at ambient condition. The donor property of MICs is comparable to that of NHCMe. The orbital interaction plays a greater role than the coulombic interaction in forming the B–L bonds. The EDA-NOCV results show that the sum of the orbital energies associated with the (+, +) and (+, −) L→[B2]←L σ-donations is far larger than that of L←[B2]→L π-back donation. It also reveals that cAACMe possesses the largest σ-donation and π-back donation abilities among the studied ligands, and the σ-donation and π-back donation abilities of MICs are comparable to those of NHCMe. Therefore, the present study shows that MICs would also be an excellent choice as ligands to experimentally realize new compounds having a strong B–B triple bond.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.