Abstract

Building artificial cells through a bottom-up approach is a remarkable challenge that would be of interest for our understanding of the origin of life, research into the minimal conditions required for life, the formation of bioreactors, and for industrial applications. To date, capsules such as liposomes, including polymersomes, are widely used, but the low membrane permeability and method to encapsulate biological materials within these structures hamper their use. By contrast, all-in-water emulsion droplets, including coacervate droplets, are promising compartments, mainly because they can spontaneously sequester chemicals. However, they lack a membrane necessary to control exchange between the inner and outer media. Moreover, droplets tend to coalesce with time, yielding macroscopic phase separation that is deleterious for any use as artificial cells. Recent advances, which are reviewed herein, have shown that such droplets can be stabilized by using lipid membranes, liposomes, polymers, proteins, and particles, and thus, preventing coalescence. Finally, different strategies that could allow the future development of artificial cells from these stabilized all-in-water emulsion droplets are discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.