Abstract

In this paper, a wide-band vibration energy harvester using a nonlinear hardening oscillator with self-excitation circuit is presented. A vibration energy harvester is one of the energy-harvesting devices that collects unused energy from vibrating environment. For the conventional linear vibration energy harvester, the resonance frequency is matched to the source frequency, and the mechanical Q factor is designed as large as possible to maximize the oscillator's amplitude. The large Q factor, however, bounds the resonance in a narrow frequency band, and the performance of the vibration energy harvester can become extremely worth when the frequency of the vibration source fluctuates. As is well known, the resonance frequency band can be expanded by introducing a hardening (or softening) nonlinear oscillator. However, it is difficult for the nonlinear vibration energy harvester to maintain the regenerated power constant because such nonlinear oscillator can have multiple stable steady-state solutions in the resonance band. In this paper, a control law that switches the load resistance between positive and negative values according to the instantaneous displacement and the velocity is proposed to give the oscillator a self-excitation capability, which ensures the oscillator entrained by the excitation only in the largest amplitude solution. Moreover, an adaptive adjustment of the control law is proposed to quicken the entrainment process. Numerical analysis shows that the nonlinear vibration energy harvester with resistance switching can maintain the large amplitude response even when the excitation frequency abruptly changes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call