Abstract

Experimental and theoretical studies of the effect of an ultrasonically absorptive coating (UAC) on hypersonic boundary-layer stability are described. A thin coating of fibrous absorbent material (felt metal) was selected as a prototype of a practical UAC. Experiments were performed in the Mach 6 wind tunnel on a half-angle sharp cone whose longitudinal half-surface was solid and other half-surface was covered by a porous coating. Hot-wire measurements of ‘natural’ disturbances and artificially excited wave packets were conducted on both solid and porous surfaces. Stability analysis of the UAC effect on two- and three-dimensional disturbances showed that the porous coating strongly stabilizes the second mode and marginally destabilizes the first mode. These results are in qualitative agreement with the experimental data for natural disturbances. The theoretical predictions are in good quantitative agreement with the stability measurements for artificially excited wave packets associated with the second mode. Stability calculations for the cooled wall case showed the feasibility of achieving a dramatic increase of the laminar run using a thin porous coating of random microstructure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.