Abstract
Stabilization of biologically relevant structural motifs has been a long-standing challenge. Here we show that atropisomeric dominant rotors can stabilize rare 310-helices in macrocycles. The target molecules were prepared using solid-phase peptide synthesis and subjected to extensive structural analysis. Molecular dynamics (MD) simulations enabled us to acquire solution structures for the target molecules, which offered evidence for stable 310-helix formation, ordinarily a metastable state. The 310-helices were shown to retain helicity after heating to 100 °C for 72 h. Moreover, the crude atropisomeric mixtures could be thermally enriched toward 310-helical macrocycles with selectivities of >20:1.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.