Abstract

The ZaP flow Z-pinch experiment at the University of Washington investigates the innovative plasma confinement concept of using sheared flows to stabilize an otherwise unstable configuration. The ZaP experiment generates an axially flowing Z-pinch that is 1 m long with a 1 cm radius with a coaxial accelerator coupled to a pinch assembly chamber. Magnetic probes measure the fluctuation levels of the azimuthal modes m = 1, 2, and 3. After assembly, the plasma is magnetically confined for an extended quiescent period where the mode activity is significantly reduced. Experimental measurements show a sheared flow profile that is coincident with the low magnetic fluctuations during the quiescent period. Recent experimental modifications produce more energetic Z-pinch plasmas that exhibit the same general behavior. The plasma equilibrium is characterized with a suite of diagnostics that measure the plasma density, magnetic field, ion and electron temperatures, in addition to plasma flow. The equilibrium is shown to satisfy radial force balance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.