Abstract

The first objective of this paper is to make the mathematical model for vibration suppression of an axially moving heterogeneous string. In order to describe the geometrical nonlinearity due to finite transverse deformation, the exact expression of the strain is used. The mathematical modeling is derived first by using Hamilton’s principle and variational lemma and the derived nonlinear PDE system is the Kirchhoff type equation with boundary feedback control. Next, we show the existence and uniqueness of strong solutions of the PDE system via techniques of functional analysis, mainly a theorem of compactness for the analysis of the approximation of the Faedo–Galerkin method and estimate a decay rate for the energy. The theoretical results are assured by numerical results of the solution’s shape and asymptotic behavior for the system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.